Produkte

Enzyme für Forschung, Diagnostik und industrielle Anwendung

Inhibitoren

Enzymhemmer sind Moleküle, die die Aktivität von Enzymen unterdrücken oder stoppen, biologischen Katalysatoren, die biologische Reaktionen katalysieren. Die Enzymhemmung reguliert Stoffwechselwege in Zellen, erhält das Gleichgewicht und verhindert übermäßige Aktivität in bestimmten Wegen. Neben ihrer Rolle in der Natur sind Enzymhemmer von großem Interesse in der Forschung, Biotechnologie und Medizin, wo sie als wertvolle Werkzeuge für therapeutische Interventionen, molekulare Forschung und industrielle Anwendungen dienen.

Creative Enzymes bietet eine breite Palette von hochwertigen Enzymhemmern an, die sorgfältig auf Qualität und Wirksamkeit ausgewählt wurden, um Ihre Forschungs- und Entwicklungsbedürfnisse zu erfüllen.

Mechanismen der Enzymhemmung

Die Enzymhemmung tritt auf, wenn ein Hemmer an ein Enzym bindet und dessen katalytische Aktivität verringert. Was gehemmt wird, variiert von Hemmer zu Hemmer und von Bindungsstelle zu Bindungsstelle. Die Enzymhemmung kann allgemein in zwei breite Typen unterteilt werden: reversible und irreversible Hemmung. Die reversible Hemmung kann weiter in kompetitive, nicht-kompetitive und unkompetitive Hemmung klassifiziert werden.

Klassifikation der Enzymhemmung: kompetitive, nicht-kompetitive und unkompetitive Hemmung.Abb. 1: Klassifikation der Enzymhemmung.

Reversible Hemmung

Reversible Hemmer binden nicht-kovalent an Enzyme, was bedeutet, dass ihre Wirkung umkehrbar ist. Dies kann durch Entfernen des Hemmers oder durch Hinzufügen von mehr Substrat geschehen. Diese Art der Hemmung ist häufig in Stoffwechselprozessen, in denen Enzyme flexibel sein und sich nach Bedarf anpassen müssen. Es gibt drei Haupttypen der reversiblen Hemmung:

  • Kompetitive Hemmung tritt auf, wenn ein Hemmer und ein Substrat beide dazu neigen, exklusiv an das Enzym zu binden. Der Hemmer ist eine Verbindung, die dem Substrat sehr ähnlich ist, sodass er um die aktive Stelle des Enzyms konkurriert. Wenn der Hemmer bindet, bildet er starke Wechselwirkungen mit dem Enzym, aber es tritt keine Reaktion auf, da der Hemmer nicht wie das Substrat reagieren kann. Dies "blockiert" das Enzym, verhindert, dass das Substrat reagiert, und verlangsamt die Reaktionsgeschwindigkeit. Diese Art der Hemmung ist jedoch normalerweise vorübergehend und umkehrbar. Der Grad der Hemmung hängt davon ab, wie viel Substrat und Hemmer vorhanden sind und wie stark jeder an die aktive Stelle bindet, da sie beide um dieselbe Stelle konkurrieren.
  • Nicht-kompetitive Hemmer binden an das Enzym, unabhängig davon, ob die aktive Stelle vom Substrat besetzt ist. Tatsächlich kann das Enzym gleichzeitig Komplexe mit sowohl dem Substrat als auch dem Hemmer bilden. Eine häufige Art der nicht-kompetitiven Hemmung wird als allosterische Hemmung bezeichnet. In diesem Fall bindet der Hemmer an einen anderen Teil des Enzyms, nicht an die aktive Stelle. Diese Bindung verändert die Form des Enzyms, sodass es seine Reaktion nicht mehr durchführen kann.
  • Unkompetitive Hemmung ist nicht häufig. In diesem Fall bindet der Hemmer an das Enzym und erhöht die Bindungsaffinität des Substrats. Obwohl der Enzym-Substrat-Hemmer-Komplex gebildet wird, ist die Reaktion jedoch viel langsamer. Es ist wichtig zu beachten, dass die unkompetitive Hemmung auftritt, nachdem das Enzym bereits an das Substrat gebunden hat. Dies unterscheidet sich von der nicht-kompetitiven Hemmung, die auftreten kann, unabhängig davon, ob das Substrat an das Enzym gebunden ist oder nicht.

Aktionsschema der kompetitiven, nicht-kompetitiven und unkompetitiven Hemmung.Abb. 2: Kompetitive, nicht-kompetitive und unkompetitive Hemmung.

Irreversible Hemmung

Bei der irreversiblen Hemmung bindet der Hemmer kovalent an das Enzym und blockiert dauerhaft dessen Aktivität. Irreversible Hemmer zielen normalerweise auf kritische Aminosäurereste in der aktiven Stelle ab, wodurch es dem Enzym unmöglich wird, zu funktionieren, selbst wenn der Hemmer entfernt wird. Beispiele sind Toxine und bestimmte Medikamente, wie Aspirin, das das Enzym Cyclooxygenase (rekombinante humane Cyclooxygenase 1) irreversibel hemmt, um Entzündungen zu reduzieren.

Anwendung der Enzymhemmer

Enzymhemmer spielen vielfältige und entscheidende Rollen sowohl in der Forschung als auch in industriellen Anwendungen. Zu den wichtigsten Anwendungen gehören:

Landwirtschaftliche Anwendungen

Enzymhemmer werden in der Landwirtschaft eingesetzt, um Schädlinge und Krankheitserreger zu kontrollieren. Bestimmte Herbizide wirken als Enzymhemmer, indem sie Enzyme angreifen, die für das Pflanzenwachstum entscheidend sind. Zum Beispiel hemmt Glyphosat, ein weit verbreitetes Herbizid, ein Enzym, das für die Aminosäuresynthese in Pflanzen unerlässlich ist, und verhindert so deren Wachstum.

Forschung und Diagnostik

Enzymhemmer sind unverzichtbare Werkzeuge in der molekularbiologischen Forschung und Diagnostik. Forscher verwenden Hemmer, um Enzymwege zu untersuchen, die Enzymspezifität zu bestimmen und Stoffwechselnetzwerke zu analysieren. In der Diagnostik werden Enzymhemmer in der Assay-Entwicklung eingesetzt, die es Wissenschaftlern ermöglicht, die Enzymaktivität zu quantifizieren oder die Wirksamkeit von Hemmern zu bewerten.

Industrielle Anwendungen

Enzymhemmer werden in Branchen wie Lebensmittel und Getränke, Textilien und Biokraftstoffe eingesetzt, wo spezifische Enzyme kontrolliert werden müssen, um die Produktqualität und -stabilität zu verbessern. In der Brauindustrie beispielsweise helfen Hemmer bestimmter Proteasen, den Schaum zu stabilisieren und die Haltbarkeit von Bier zu verlängern.

Skelettformel von Tipranavir.Abb. 3: Beispiel eines Enzymhemmers: Tipranavir—ein HIV-Proteasehemmer.

Creative Enzymes freut sich, verschiedene Enzymhemmer von höchster Qualität an die Kunden zu liefern. Wir sind weiterhin der zuverlässigste Anbieter von Enzymprodukten auf dem globalen Markt. Unser schneller Service, engagierte Kundenbetreuung und zuverlässiger Ansatz haben uns zum bevorzugten Anbieter gemacht. Kontaktieren Sie uns noch heute, um die perfekte Lösung für Ihre Enzymhemmer-Bedürfnisse zu finden!

Abb. 1: Klassifikation der Enzymhemmung.

References:

  1. Geronikaki A, Eleutheriou PT. Enzymes and enzyme inhibitors—applications in medicine and diagnosis. International Journal of Molecular Sciences. 2023;24(6):5245.
  2. Molecular biology of the cell (6th edition, 2015). Garland Science, Taylor and Francis group.
Katalog Produktname EG-Nr. CAS-Nr. Quelle Preis
CEI-1109 SNS-032.HCL 345627-90-9 Anfrage
CEI-1108 SD169 1670-87-7 Anfrage
CEI-1107 SD-06 271576-80-8 Anfrage
CEI-1106 SB242235 193746-75-7 Anfrage
CEI-1105 RWJ-67657 215303-72-3 Anfrage
CEI-1104 Purvalanol B 212844-54-7 Anfrage
CEI-1103 PIK-75, freie Base 372196-67-3 Anfrage
CEI-1102 PF-562271 717907-75-0 Anfrage
CEI-1101 PF431396 717906-29-1 Anfrage
CEI-1100 PD173955-Analog1 185039-99-0 Anfrage
CEI-1099 PD173955 260415-63-2 Anfrage
CEI-1098 Motesanib 453562-69-1 Anfrage
CEI-1097 Merck 5 457081-03-7 Anfrage
CEI-1096 Ki20227 623142-96-1 Anfrage
CEI-1095 CYC-116 693228-63-6 Anfrage
CEI-1094 CP-724714 383432-38-0 Anfrage
CEI-1093 Tofacitinib 477600-75-2 Anfrage
CEI-1092 CC-401 395104-30-0 Anfrage
CEI-1091 Bosutinib 380843-75-4 Anfrage
CEI-1090 BMS-5 1338247-35-0 Anfrage
CEI-1089 BMS-3 1338247-30-5 Anfrage
CEI-1088 BMS-2 888719-03-7 Anfrage
CEI-1087 Bisindoylmaleimid X HCl 145317-11-9 Anfrage
CEI-1086 AV-412 451492-95-8 Anfrage
CEI-1085 AT-7519 902135-91-5 Anfrage
CEI-1084 AMG-Tie2-1 870223-96-4 Anfrage
CEI-1083 AMG-47a 882663-88-9 Anfrage
CEI-1082 Akt-I-1,2 473382-48-8 Anfrage
CEI-1081 Akt-I-1 473382-39-7 Anfrage
CEI-1080 AG13958 319460-94-1 Anfrage
Produkte
Online-Anfrage