Produkte

Enzyme für Forschung, Diagnostik und industrielle Anwendung

Maßgeschneiderte Enzyme

Maßgeschneiderte Enzyme von Creative Enzymes.

Enzyme, die Katalysatoren biologischer Systeme, sind für Forschungs- und Diagnostikanwendungen unverzichtbar geworden. Von der Forschung bis zur Diagnostik katalysieren diese Biokatalysatoren eine Vielzahl chemischer Umwandlungen mit beispielloser Spezifität und Effizienz. Allerdings sind natürliche Enzyme nicht immer die perfekte Lösung für die Anwendungen, die sie bedienen. Hier kommen maßgeschneiderte Enzyme ins Spiel, die die Lücke zwischen natürlicher Funktion und praktischem Bedarf überbrücken. Angepasste Enzyme, die nach präzisen Spezifikationen modifiziert oder entwickelt wurden, bieten transformative Potenziale in mehreren Disziplinen.

Bei Creative Enzymes liefern wir hochwertige, maßgeschneiderte Enzyme und Enzymmischungen, die auf spezifische Bedürfnisse zugeschnitten sind und nicht nur wissenschaftliche Entdeckungen fördern, sondern auch Türen zu Innovationen in der Diagnostik, Molekularbiologie und medizinischen Forschung öffnen.

Der Bedarf an maßgeschneiderten Enzymen

Die natürliche Welt bietet ein vielfältiges Enzymwerkzeug; jedoch erfüllen natürliche Enzyme oft nicht die strengen Anforderungen von Forschungs-, Diagnose- oder Therapieanwendungen. Faktoren wie thermische Instabilität, pH-Empfindlichkeit, suboptimale Substratspezifität und niedrige katalytische Effizienz können ihre Leistung in nicht-biologischen Umgebungen einschränken. Maßgeschneiderte Enzyme beheben diese Mängel durch gezielte Modifikationen, verbessern die Leistung und erweitern das Anwendungsspektrum.

Strategien für das Design maßgeschneiderter Enzyme

Das Design maßgeschneiderter Enzyme umfasst mehrere Strategien, die jeweils darauf abzielen, spezifische funktionale Ziele zu erreichen. Diese Ansätze können grob wie folgt kategorisiert werden:

Geleitete Evolution

In Fällen, in denen das strukturelle Wissen begrenzt ist, bietet die geleitete Evolution eine leistungsstarke Alternative. Diese Methode ahmt die natürliche Selektion im Labor nach, indem Enzymlibraries durch zufällige Mutagenese oder Rekombination erstellt werden. Varianten werden auf gewünschte Eigenschaften gescreent, und die besten Performer werden durch iterative Zyklen von Mutation und Selektion weiter verfeinert.

Die geleitete Evolution war entscheidend für die Schaffung von Enzymen zur nachhaltigen Biofuelproduktion, pharmazeutischen Synthese und sogar neuartigen Biomaterialien.

Rationales Design

Rationales Design basiert auf detailliertem Wissen über die Struktur und den Mechanismus eines Enzyms. Forscher verwenden computergestützte Werkzeuge und strukturelle Biologietechniken, um vorherzusagen, wie Änderungen an Aminosäuresequenzen die Aktivität, Stabilität oder Spezifität eines Enzyms beeinflussen werden.

Zum Beispiel kann die Einführung spezifischer Mutationen im aktiven Zentrum die Substratbindung verbessern und damit die katalytische Effizienz erhöhen. Ebenso können Modifikationen in peripheren Regionen die Stabilität eines Enzyms bei hohen Temperaturen oder anderen herausfordernden Bedingungen verbessern.

De Novo Design

Der ehrgeizigste Ansatz zur Schaffung maßgeschneiderter Enzyme ist das De Novo Design, bei dem völlig neue Enzyme von Grund auf neu erstellt werden. Mithilfe computergestützter Modelle entwerfen Wissenschaftler Enzyme mit maßgeschneiderten aktiven Zentren, die für spezifische Reaktionen optimiert sind. Obwohl herausfordernd, hat diese Technik zu Durchbrüchen geführt, einschließlich Enzymen für Reaktionen, von denen bekannt ist, dass sie in der Natur nicht vorkommen.

Chemische Modifikationen

Chemische Modifikationen, wie die Konjugation von Enzymen mit Polymeren, Kofaktoren oder Nanopartikeln, können die Enzymleistung weiter verbessern. Diese Modifikationen können die thermische Stabilität erhöhen, die Immunogenität (in therapeutischen Kontexten) reduzieren oder eine standortspezifische Immobilisierung für industrielle Anwendungen ermöglichen.

Strategien für das Design maßgeschneiderter Enzyme: Enzymneugestaltung, geleitete Evolution, semi-rationales Design, rationales Design und De Novo Design.Abbildung 1: Ansätze zum Enzymdesign. (a) Die Fitnesslandschaftskarte eines Enzyms zeigt die Beziehung zwischen verschiedenen Varianten eines Enzyms und ihrer Fitness. (b) Die geleitete Evolution ahmt den natürlichen Evolutionsprozess nach, um die Funktion von Proteinen durch mehrere Runden zufälliger Mutation, Screening und Selektion zu verbessern. (c) Im semi-rationalen Designansatz werden die anhand der Enzymstrukturen identifizierten Schlüsselseiten mit Sättigungs-Mutagenese mutiert, um die Enzymfunktion zu verbessern. (d) Im rationalen Designansatz werden die anhand der dynamischen Strukturen und des katalytischen Mechanismus des Enzyms identifizierten Stellen mutiert, um die Proteinfunktion zu verbessern. (e) De Novo Designmethoden werden verwendet, um Proteinrückgrate von Grund auf neu zu konstruieren, um Proteinstrukturen mit neuen Funktionen zu erzeugen. (Zhou und Huang, 2024)

Maßgeschneiderte Enzymmischungen

Maßgeschneiderte Enzymmischungen beziehen sich auf die strategische Kombination mehrerer Enzyme, um spezifische Funktionen auszuführen oder gewünschte Ergebnisse zu erzielen. Im Gegensatz zu einzelnen Enzymen, die individuelle Reaktionen katalysieren, sind Enzymmischungen so konzipiert, dass sie synergistisch arbeiten, um Effizienz, Funktionalität und Vielseitigkeit zu erhöhen.

Für Forschungs- und Diagnoszzwecke können Enzymmischungen auf Spezifität, Aktivität und Stabilität optimiert werden, um spezifische experimentelle Bedingungen oder diagnostische Anforderungen zu erfüllen. Diese Mischungen sind besonders wertvoll in Anwendungen, die sequenzielle Reaktionen, mehrstufige Prozesse oder Kompatibilität mit spezifischen Substraten erfordern.

Anwendungen maßgeschneiderter Enzyme für Forschungs- und Diagnoszzwecke

Maßgeschneiderte Enzyme, die entwickelt wurden, um spezifischen Anforderungen gerecht zu werden, sind in der Forschung und Diagnostik aufgrund ihrer maßgeschneiderten Aktivität, Stabilität und Spezifität von unschätzbarem Wert. Ihre Anwendungen erstrecken sich über verschiedene Bereiche, einschließlich Molekularbiologie, Proteomik, klinische Diagnostik und Biotechnologie.

Anwendungen in der Molekularbiologie

  • PCR und qPCR: Modifizierte DNA-Polymerasen verbessern die Amplifikationseffizienz, -treue und -geschwindigkeit in Polymerase-Kettenreaktionen und ermöglichen Anwendungen wie Genotypisierung und Genexpressionsstudien.
  • Genbearbeitung: Maßgeschneiderte Nukleasen (z. B. CRISPR-assoziierte Enzyme) ermöglichen präzise Genomeingriffe und unterstützen die funktionelle Genomik und therapeutische Forschung.
  • Klonierung: Angepasste Restriktionsenzyme und Ligasen verbessern das Vektordesign und die Effizienz der DNA-Zusammenstellung.

Proteomik und Proteinengineering

  • Proteinverdau: Modifizierte Proteasen mit spezifischen Spaltpräferenzen verbessern die Peptidkartierung und die Massenspektrometrieanalyse.
  • Analyse posttranslationaler Modifikationen: Maßgeschneiderte Kinasen, Phosphatasen und Glykosidasen ermöglichen das Studium von Proteinmodifikationen wie Phosphorylierung und Glykosylierung.

Klinische Diagnostik

  • Biomarkererkennung: Enzyme wie Peroxidasen und alkalische Phosphatasen werden für Immunoassays, einschließlich ELISA und Lateralfluss-Tests, angepasst, um die Signalgenerierung und Stabilität zu verbessern.
  • Point-of-Care-Tests: Maßgeschneiderte Enzyme verbessern die Genauigkeit und Geschwindigkeit von Schnelltests für Infektionskrankheiten, Stoffwechselstörungen und Herz-Kreislauf-Erkrankungen.
  • Nukleinsäureerkennung: Maßgeschneiderte Reverse Transkriptasen und Polymerasen verbessern die Sensitivität in diagnostischen Anwendungen wie COVID-19-Erkennung und Krebs-Mutationsscreening.

Umwelt- und Lebensmitteltests

  • Pathogen-Erkennung: Enzyme, die für die schnelle Amplifikation und Erkennung entwickelt wurden, werden zur Identifizierung von lebensmittelbedingten Pathogenen und Verunreinigungen eingesetzt.
  • Rückstandsanalysen: Maßgeschneiderte Enzyme helfen bei der Erkennung von Pestiziden, Antibiotika und Allergenen in Lebensmittel- und Umweltproben.

Entwicklung von Forschungswerkzeugen

  • Biosensoren: Enzyme, die für hohe Spezifität und Stabilität entwickelt wurden, werden in Biosensoren integriert, um Metaboliten, Ionen und Umweltverschmutzungen zu erkennen.
  • Signalverstärkung: Maßgeschneiderte Enzyme verbessern die Sensitivität in fluoreszenz-, kolorimetrischen oder chemilumineszenten Assays und machen sie robuster für Forschung und Hochdurchsatz-Screening.

Anwendungen maßgeschneiderter Enzyme in den Forschungs- und Diagnosikbereichen.

Maßgeschneiderte Enzyme haben die Forschung und Diagnostik revolutioniert, indem sie unvergleichliche Präzision, Effizienz und Flexibilität bieten. Bei Creative Enzymes bieten wir fachmännisch entwickelte maßgeschneiderte Enzyme, um Ihre spezifischen Bedürfnisse zu erfüllen. Kontaktieren Sie uns noch heute, um die besten Lösungen für Ihre Forschungs- und Diagnosikanwendungen zu finden!

Reference:

  1. Zhou J, Huang M. Navigating the landscape of enzyme design: from molecular simulations to machine learning. Chem Soc Rev. 2024;53(16):8202-8239.
Katalog Produktname EG-Nr. CAS-Nr. Quelle Preis
EXWM-2191 Kdo2-Lipid IVA Palmitoleoyltransferase EC 2.3.1.242 Anfrage
EXWM-2190 Kdo2-Lipid IVA Lauroyltransferase EC 2.3.1.241 Anfrage
EXWM-2189 Narbonolid-Synthase EC 2.3.1.240 Anfrage
EXWM-2188 Sphingosin N-Acyltransferase EC 2.3.1.24 37257-09-3 Anfrage
EXWM-2187 10-Deoxymethynolide-Synthase EC 2.3.1.239 Anfrage
EXWM-2186 Monacolin J Säure Methylbutanoat Transferase EC 2.3.1.238 Anfrage
EXWM-2185 neocarzinostatin naphthoate synthase EC 2.3.1.237 Anfrage
EXWM-2184 5-Methylnaphtholsäure-Synthase EC 2.3.1.236 Anfrage
EXWM-2183 Tetracenomycin F2 Synthase EC 2.3.1.235 Anfrage
EXWM-2182 N6-L-Threonylcarbamoyladenin-Synthase EC 2.3.1.234 Anfrage
EXWM-2181 1,3,6,8-Tetrahydroxynaphthalen-Synthase EC 2.3.1.233 Anfrage
EXWM-2180 Methanol O-Anthraniloyltransferase EC 2.3.1.232 Anfrage
EXWM-2179 tRNAPhe {7-[3-Amino-3-(methoxycarbonyl)propyl]wyosine37-N}-Methoxycarbonyltransferase EC 2.3.1.231 Anfrage
EXWM-2178 2-Heptyl-4(1H)-chinolon-Synthase EC 2.3.1.230 Anfrage
EXWM-2177 1-Acylglycerophosphocholin O-Acyltransferase EC 2.3.1.23 9027-64-9 Anfrage
EXWM-2176 4-Coumaroyl-Homoserinlacton-Synthase EC 2.3.1.229 Anfrage
EXWM-2175 Isovaleryl-Homoserinlacton-Synthase EC 2.3.1.228 Anfrage
EXWM-2174 GDP-Perosamin-N-Acetyltransferase EC 2.3.1.227 Anfrage
EXWM-2173 Carboxymethylprolin-Synthase EC 2.3.1.226 Anfrage
EXWM-2172 Protein S-Acyltransferase EC 2.3.1.225 Anfrage
EXWM-2171 Acetyl-CoA-Benzylalkohol-Acetyltransferase EC 2.3.1.224 Anfrage
EXWM-2170 3-Oxo-5,6-didehydrosuberyl-CoA Thiolase EC 2.3.1.223 Anfrage
EXWM-2169 Phosphatpropanoyltransferase EC 2.3.1.222 Anfrage
EXWM-2168 noranthrone-Synthase EC 2.3.1.221 Anfrage
EXWM-2167 2,4,6-Trihydroxybenzophenon-Synthase EC 2.3.1.220 Anfrage
EXWM-2166 2-Acylglycerol O-Acyltransferase EC 2.3.1.22 9055-17-8 Anfrage
EXWM-2165 demethoxycurcumin Synthase EC 2.3.1.219 Anfrage
EXWM-2164 Phenylpropanoylacetyl-CoA-Synthase EC 2.3.1.218 Anfrage
EXWM-2163 Curcumin-Synthase EC 2.3.1.217 Anfrage
EXWM-2162 5,7-Dihydroxy-2-methylchromon-Synthase EC 2.3.1.216 Anfrage
Produkte
Online-Anfrage