Produkte

Enzyme für Forschung, Diagnostik und industrielle Anwendung

Inhibitoren

Enzymhemmer sind Moleküle, die die Aktivität von Enzymen unterdrücken oder stoppen, biologischen Katalysatoren, die biologische Reaktionen katalysieren. Die Enzymhemmung reguliert Stoffwechselwege in Zellen, erhält das Gleichgewicht und verhindert übermäßige Aktivität in bestimmten Wegen. Neben ihrer Rolle in der Natur sind Enzymhemmer von großem Interesse in der Forschung, Biotechnologie und Medizin, wo sie als wertvolle Werkzeuge für therapeutische Interventionen, molekulare Forschung und industrielle Anwendungen dienen.

Creative Enzymes bietet eine breite Palette von hochwertigen Enzymhemmern an, die sorgfältig auf Qualität und Wirksamkeit ausgewählt wurden, um Ihre Forschungs- und Entwicklungsbedürfnisse zu erfüllen.

Mechanismen der Enzymhemmung

Die Enzymhemmung tritt auf, wenn ein Hemmer an ein Enzym bindet und dessen katalytische Aktivität verringert. Was gehemmt wird, variiert von Hemmer zu Hemmer und von Bindungsstelle zu Bindungsstelle. Die Enzymhemmung kann allgemein in zwei breite Typen unterteilt werden: reversible und irreversible Hemmung. Die reversible Hemmung kann weiter in kompetitive, nicht-kompetitive und unkompetitive Hemmung klassifiziert werden.

Klassifikation der Enzymhemmung: kompetitive, nicht-kompetitive und unkompetitive Hemmung.Abb. 1: Klassifikation der Enzymhemmung.

Reversible Hemmung

Reversible Hemmer binden nicht-kovalent an Enzyme, was bedeutet, dass ihre Wirkung umkehrbar ist. Dies kann durch Entfernen des Hemmers oder durch Hinzufügen von mehr Substrat geschehen. Diese Art der Hemmung ist häufig in Stoffwechselprozessen, in denen Enzyme flexibel sein und sich nach Bedarf anpassen müssen. Es gibt drei Haupttypen der reversiblen Hemmung:

  • Kompetitive Hemmung tritt auf, wenn ein Hemmer und ein Substrat beide dazu neigen, exklusiv an das Enzym zu binden. Der Hemmer ist eine Verbindung, die dem Substrat sehr ähnlich ist, sodass er um die aktive Stelle des Enzyms konkurriert. Wenn der Hemmer bindet, bildet er starke Wechselwirkungen mit dem Enzym, aber es tritt keine Reaktion auf, da der Hemmer nicht wie das Substrat reagieren kann. Dies "blockiert" das Enzym, verhindert, dass das Substrat reagiert, und verlangsamt die Reaktionsgeschwindigkeit. Diese Art der Hemmung ist jedoch normalerweise vorübergehend und umkehrbar. Der Grad der Hemmung hängt davon ab, wie viel Substrat und Hemmer vorhanden sind und wie stark jeder an die aktive Stelle bindet, da sie beide um dieselbe Stelle konkurrieren.
  • Nicht-kompetitive Hemmer binden an das Enzym, unabhängig davon, ob die aktive Stelle vom Substrat besetzt ist. Tatsächlich kann das Enzym gleichzeitig Komplexe mit sowohl dem Substrat als auch dem Hemmer bilden. Eine häufige Art der nicht-kompetitiven Hemmung wird als allosterische Hemmung bezeichnet. In diesem Fall bindet der Hemmer an einen anderen Teil des Enzyms, nicht an die aktive Stelle. Diese Bindung verändert die Form des Enzyms, sodass es seine Reaktion nicht mehr durchführen kann.
  • Unkompetitive Hemmung ist nicht häufig. In diesem Fall bindet der Hemmer an das Enzym und erhöht die Bindungsaffinität des Substrats. Obwohl der Enzym-Substrat-Hemmer-Komplex gebildet wird, ist die Reaktion jedoch viel langsamer. Es ist wichtig zu beachten, dass die unkompetitive Hemmung auftritt, nachdem das Enzym bereits an das Substrat gebunden hat. Dies unterscheidet sich von der nicht-kompetitiven Hemmung, die auftreten kann, unabhängig davon, ob das Substrat an das Enzym gebunden ist oder nicht.

Aktionsschema der kompetitiven, nicht-kompetitiven und unkompetitiven Hemmung.Abb. 2: Kompetitive, nicht-kompetitive und unkompetitive Hemmung.

Irreversible Hemmung

Bei der irreversiblen Hemmung bindet der Hemmer kovalent an das Enzym und blockiert dauerhaft dessen Aktivität. Irreversible Hemmer zielen normalerweise auf kritische Aminosäurereste in der aktiven Stelle ab, wodurch es dem Enzym unmöglich wird, zu funktionieren, selbst wenn der Hemmer entfernt wird. Beispiele sind Toxine und bestimmte Medikamente, wie Aspirin, das das Enzym Cyclooxygenase (rekombinante humane Cyclooxygenase 1) irreversibel hemmt, um Entzündungen zu reduzieren.

Anwendung der Enzymhemmer

Enzymhemmer spielen vielfältige und entscheidende Rollen sowohl in der Forschung als auch in industriellen Anwendungen. Zu den wichtigsten Anwendungen gehören:

Landwirtschaftliche Anwendungen

Enzymhemmer werden in der Landwirtschaft eingesetzt, um Schädlinge und Krankheitserreger zu kontrollieren. Bestimmte Herbizide wirken als Enzymhemmer, indem sie Enzyme angreifen, die für das Pflanzenwachstum entscheidend sind. Zum Beispiel hemmt Glyphosat, ein weit verbreitetes Herbizid, ein Enzym, das für die Aminosäuresynthese in Pflanzen unerlässlich ist, und verhindert so deren Wachstum.

Forschung und Diagnostik

Enzymhemmer sind unverzichtbare Werkzeuge in der molekularbiologischen Forschung und Diagnostik. Forscher verwenden Hemmer, um Enzymwege zu untersuchen, die Enzymspezifität zu bestimmen und Stoffwechselnetzwerke zu analysieren. In der Diagnostik werden Enzymhemmer in der Assay-Entwicklung eingesetzt, die es Wissenschaftlern ermöglicht, die Enzymaktivität zu quantifizieren oder die Wirksamkeit von Hemmern zu bewerten.

Industrielle Anwendungen

Enzymhemmer werden in Branchen wie Lebensmittel und Getränke, Textilien und Biokraftstoffe eingesetzt, wo spezifische Enzyme kontrolliert werden müssen, um die Produktqualität und -stabilität zu verbessern. In der Brauindustrie beispielsweise helfen Hemmer bestimmter Proteasen, den Schaum zu stabilisieren und die Haltbarkeit von Bier zu verlängern.

Skelettformel von Tipranavir.Abb. 3: Beispiel eines Enzymhemmers: Tipranavir—ein HIV-Proteasehemmer.

Creative Enzymes freut sich, verschiedene Enzymhemmer von höchster Qualität an die Kunden zu liefern. Wir sind weiterhin der zuverlässigste Anbieter von Enzymprodukten auf dem globalen Markt. Unser schneller Service, engagierte Kundenbetreuung und zuverlässiger Ansatz haben uns zum bevorzugten Anbieter gemacht. Kontaktieren Sie uns noch heute, um die perfekte Lösung für Ihre Enzymhemmer-Bedürfnisse zu finden!

Abb. 1: Klassifikation der Enzymhemmung.

References:

  1. Geronikaki A, Eleutheriou PT. Enzymes and enzyme inhibitors—applications in medicine and diagnosis. International Journal of Molecular Sciences. 2023;24(6):5245.
  2. Molecular biology of the cell (6th edition, 2015). Garland Science, Taylor and Francis group.
Katalog Produktname EG-Nr. CAS-Nr. Quelle Preis
CEI-0247 Stavudin 3056-17-5 Anfrage
CEI-0246 A 922500 959122-11-3 Anfrage
CEI-0245 Icariin 489-32-7 Anfrage
CEI-0244 Raltegravir (MK-0518) 518048-05-0 Anfrage
CEI-0243 Rivaroxaban (Xarelto) 366789-02-8 Anfrage
CEI-0242 Nepicastat-Hydrochlorid 170151-24-3 Anfrage
CEI-0241 Apixaban 503612-47-3 Anfrage
CEI-0240 Cilomilast (SB-207499) 153259-65-5 Anfrage
CEI-0239 Baicalein 491-67-8 Anfrage
CEI-0238 Luteolin 491-70-3 Anfrage
CEI-0237 Vardenafil-Hydrochlorid-Trihydrat (BAY38-9456) 224785-90-4 Anfrage
CEI-0236 S/GSK1349572 (GSK1349572) 1051375-16-6 Anfrage
CEI-0235 Apigenin 520-36-5 Anfrage
CEI-0234 Sildenafilcitrat 171599-83-0 Anfrage
CEI-0233 URB597 546141-08-6 Anfrage
CEI-0232 TAK-700 (Orteronel) 566939-85-3 Anfrage
CEI-0231 GSK256066 801312-28-7 Anfrage
CEI-0230 BMS-707035 729607-74-3 Anfrage
CEI-0229 S-(+)-Rolipram 85416-73-5 Anfrage
CEI-0228 Abirateronacetat (CB7630) 154229-18-2 Anfrage
CEI-0227 Elvitegravir (GS-9137) 697761-98-1 Anfrage
CEI-0226 Tipifarnib (Zarnestra) 192185-72-1 Anfrage
CEI-0225 VX-222 1026785-55-6 Anfrage
CEI-0224 MLN9708 1201902-80-8 Anfrage
CEI-0223 MLN2238 1072833-77-2 Anfrage
CEI-0222 MG-132 133407-82-6 Anfrage
CEI-0221 BMS-790052 1214735-16-6 Anfrage
CEI-0220 VX-950 402957-28-2 Anfrage
CEI-0219 Lopinavir (ABT-378) 192725-17-0 Anfrage
CEI-0218 Atazanavir-Sulfat 229975-97-7 Anfrage
Produkte
Online-Anfrage